有这样一类数,它们可以写作两个自然数的平方差
14 查阅
a、2660
b、2665
c、2664
d、2700
参考答案:
对于任意奇数2k+1=(k+1)2-k2 ,但1不符合要求,舍去 2,对于所有能被4整除的数, 4k=(k+1)2-(k-1)2,但4不符合要求,舍去 3,对于被4除余2的数,假设4k+2=x2-y2=(x-y)(x+y),当 奇偶性相同时,(x-y)(x+y)可被4整除,与提设矛盾,舍去;当xy 奇偶性不同时,(x-y)(x+y) 为奇数,与提设矛盾,舍去. 显然,从5开始每4个数中有3个是智慧数,而1到4中只有3只智慧数,第1993个智慧数为(1993-1)÷3×4+4=2660。