若 a , b , c 是三个互不相等的大于

19 查阅
若 a , b , c 是三个互不相等的大于0的自然数,且a + b + c = 1155 ,则它们的最大公约数的最大值为,最小公倍数的最小值为,最小公倍数的最大值为

参考答案:

165、660、57065085

1) 由于a + b + c = 1155,而1155=3×5×7×11。令a=mp,b=mq,c=ms.m为a,b,c的最大公约数,则p+q+s最小取7。此时m=165.
2) 为了使最小公倍数尽量小,应使三个数的最大公约数m尽量大,并且使a,b,c的最小公倍数尽量小,所以应使m=165,a=1,b=2,c=4,此时三个数分别为165,330,660,它们的最小公倍数为660,所以最小公倍数的最小值为660。
3) 为了使最小公倍数尽量小,应使三个数两两互质且乘积尽量大。当三个数的和一定时,为了使它们的乘积尽量大,应使它们尽量接近。由于相邻的自然数是互质的,所以可以令1155=384+385+386,但是在这种情况下384和386有公约数2,而当1155=383+385+387时,三个数两两互质,它们的最小公倍数为383×385×387=57065085,即最小公倍数的最大值为57065085。

最小公倍数