由此可见,在计算过程中针对题目特点选用不同的解题方法,往往有助于减少运算过程中所消耗的时间及出错的机会,达到快速,准确解题的效果,而运用较多的解题方法通常有以下几种:
1.商余法:这种方法主要是应用于解答有机物(尤其是烃类)知道分子量后求出其分子式的一类题目.对于烃类,由于烷烃通式为CnH2n 2,分子量为14n 2,对应的烷烃基通式为CnH2n 1,分子量为14n 1,烯烃及环烷烃通式为CnH2n,分子量为14n,对应的烃基通式为CnH2n-1,分子量为14n-1,炔烃及二烯烃通式为CnH2n-2,分子量为14n-2,对应的烃基通式为CnH2n-3,分子量为14n-3,所以可以将已知有机物的分子量减去含氧官能团的式量后,差值除以14(烃类直接除14),则的商为含碳的原子数(即n值),余数代入上述分子量通式,符合的就是其所属的类别.
[例3]某直链一元醇14克能与金属钠完全反应,生成0.2克氢气,则此醇的同分异构体数目为:
A.6个 B.7个 C.8个 D.9个
由于一元醇只含一个-OH,每mol醇只能转换出1/2molH2,由生成0.2克H2推断出14克醇应有0.2mol,所以其摩尔质量为72克/摩,分子量为72,扣除羟基式量17后,剩余55,除以14,商为3,余为13,不合理,应取商为4,余为-1,代入分子量通式,应为4个碳的烯烃基或环烷基,结合"直链",从而推断其同分异构体数目为6个.
2. 平均值法这种方法最适合定性地求解混合物的组成,即只求出混合物的可能成分,不用考虑各组分的含量.根据混合物中各个物理量(例如密度,体积,摩尔质量,物质的量浓度,质量分数等)的定义式或结合题目所给条件,可以求出混合物某个物理量的平均值,而这个平均值必须介于组成混合物的各成分的同一物理量数值之间,换言之,混合物的两个成分中的这个物理量肯定一个比平均值大,一个比平均值小,才能符合要求,从而可判断出混合物的可能组成.
[例4]将两种金属单质混合物13g,加到足量稀硫酸中,共放出标准状况下气体11.2L,这两种金属可能是
A. Zn和Fe B .Al和Zn C.Al和Mg D.Mg和Cu
将混合物当作一种金属来看,因为是足量稀硫酸,13克金属全部反应生成的11.2L(0.5摩尔)气体全部是氢气,也就是说,这种金属每放出1摩尔氢气需26克,如果全部是 2价的金属,其平均原子量为26,则组成混合物的 2价金属,其原子量一个大于26,一个小于26.代入选项,在置换出氢气的反应中,显 2价的有Zn,原子量为65,Fe原子量为56,Mg原子量为24,但对于Al,由于在反应中显 3价,要置换出1mol氢气,只要18克Al便够,可看作 2价时其原子量为27/(3/2)=18,同样假如有 1价的Na参与反应时,将它看作 2价时其原子量为23*2=46,对于Cu,因为它不能置换出H2,所以可看作原子量为无穷大,从而得到A中两种金属原子量均大于26,C中两种金属原子量均小于26,所以A,C都不符合要求,B中Al的原子量比26小,Zn比26大,D中Mg原子量比26小,Cu原子量比26大,故B,D为应选答案.