指点2010年高考数学学习方法及复习规划1

浏览 8

2针对2010年高考又该怎么复习,怎么规划呢?科学巨匠爱因斯坦的公式是V=X Y Z(V—成功;X—刻苦的精神;Y—科学的方法;Z—少说废话),聂立柯“四轮学习方略”中,成功=目标 计划 方法 行动。 短短几个月复习时间,但对考生来讲犹如万里长征。要有艰辛的思想准备,很多成功考生的经验告诉我们,“信心和毅力比什么都重要”。那些肯于用自己的脑袋学习,既有刻苦精神,又讲求科学方法的同学,在学习的道路上一定会有长足的进步。

  下面我针对高考复习我提供以下建议,供大家参考:

  高考复习一般分三个阶段,即基础复习阶段;专题复习阶段;冲刺阶段。

  第一轮复习,即基础复习阶段,这个阶段的复习是整个高考复习中最关键的环节,一般从8月份到第二年的三月份,历时8个月,这一阶段的复习效果直接影响整个高考的成败,因此同学们应该高度重视,在第一轮复习中我们必须严格按照《复习大纲》的要求,把《大纲》中所有的考点逐个进行突破,全面落实,形成完整的知识体系。这就需要考生要对课本中的基本概念,基本公式,基本方法重点掌握,在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。常用的数学思想方法有:(1)函数思想方法:根据问题的特点构建函数将所要研究的问题,转化为对构建函数的性质如定义域、值域、单调性、奇偶性、周期性、最值、对称性、范围和图像的交点个数等的研究;(2)方程思想方法:通过列方程(组)建立问题中的已知数和未知数的关系,通过解方程(组)实现化未知为已知,从而实现解决问题的目的;(3)数形结合的思想:它可以把抽象的数学语言与直观图形相对应,使复杂问题简单化,抽象问题具体化,(4)分类讨论的思想:此思想方法在解答题中越来越体现出其重要地位,在解题中应明确分类原则:标准要统一,不重不漏。

  同时考生在此阶段的复习过程中一定要重视教材的作用,我们有很大一部分考生不重视课本,甚至在高考这一年中从来没翻过课本,这是非常危险的。因为高考试题有一部分都是从书上的例题和练习里引申变形而来的,对于我们基础比较薄弱的同学来讲,就更应该仔细阅读教材,认真琢磨书上的例题,体会其中包含的数学思想和数学方法。这对于我们提高数学能力是非常有帮助的!

  对于课外参考书的选择我认为选择一到两本适合自己的参考书,把里面的精髓学懂学会就足够了,不必弄的太多,弄的太多,反而对自己是一个很大的包袱。

  第二轮复习,即专题强化复习阶段,一般从三月份到四月底,由于第一轮复习是以各知识板块为主,横向联系不多,因此在第二轮复习中应重点突出在知识网络交汇点处的复习,高考中一般有下面几个专题,即:函数与导函数专题;平面向量与三角函数专题;平面向量与解析几何专题;空间向量与立体几何专题;概率与统计专题;数列与不等式专题等,通过这几个版块的复习目标在于提高学生解答高考解答题的能力。此阶段学生不应沉迷于套卷演练,而应以典型例题为载体,以数学思想方法的灵活运用为线索,讲求解题策略,使自己在第一轮复习的基础上,数学素质得以明显提升。值得注意的是在这个阶段当年的《考试大纲》已经出台了,考生应该仔细阅读《考试大纲》,针对前期的复习来查漏补缺,特别是对于《大纲》中与往年变动的地方我们一定高度重视,重点复习,争取在高考复习中面面俱到,不留死角。

  第三轮复习,即考前冲刺复习阶段,在这个阶段我们应该大量做一些练习, 要做题先要选题,高考真题一定是的练习题!因此建议一定要好好做一下最十年以来的高考试卷,包括全国卷和地方卷,其次能找到近5年以来各区的统考试题,在做题的过程中来巩固前面复习过的考点。同时最后的复习别忘了课本,特别是在考前应该再次翻开课本把里面公式和定理再看看,把典型的例题再做做,因为书上的例题毕竟比较简单,在考前做例题一是防止手生,便于高考正常发挥,一是有助于提高我们的自信心。

  在高考复习的整个过程中,我们能建立一个积错本,就是要求我们在每一次练习中对于错误的地方一定要进行错误分析,一般错误包括三种:一种是计算失误,一种是审题失误,一种是思维起点错误。对于第一种这是我们大多数同学经常出现的问题,在高考备考中我们一定要注意,每次考试和做题中一定要有始有终,千万不能眼高手低,我们很多同学在平时训练时一看题觉得自己会做就放弃演算过程,这是不好的学习习惯,只有每次在做题时能善始善终,才能提高我们运算的准确度,避免计算失误!对于第二种审题失误,比如在有一年的高考中让你求的是极值,而我们很多同学求的是最值,画蛇添足,浪费了时间还要扣分,对于这种情况,我想在考试时一定要先把题仔细阅读一遍,甚至可以把试卷上关键字做上记号来提示你充分而准确地利用已知条件,这是一个不错的办法,同学们不妨可以试试!对于第三种这是一个很关键的问题,在高考中解答题占了很大的比例,要克服这个问题,我们在平时学习中一定要注意积累一些典型例题的典型解法,比如在解析几何里的动点问题我们可以考虑消参法,数列中的构造法,函数中的转移法,等等,这都是很好的方法,在备考中通过掌握这一种方法就可以很顺利做一类题目,触类旁通,举一反三!只有我们在平时不断积累,我们就会不断进步,高考中就会得心应手,出奇制胜!


相关文章