线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性

19 查阅

线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。

A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到

B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变

C.线性规划问题如果存在可行解,则一定有最优解

D.线性规划问题的最优解只可能是0个、1个或无穷多个

参考答案:

C解析:线性规划的可行解域是由一组线性约束条件形成的,从几何意义来说,就是由一些线性解面围割形成的区域。由于线性规划的目标函数也是线性的,因此,目标函数的等值域是线性区域。如果在可行解域中的某内点处目标函数达到最优值,则通过该内点的目标函数等值域与可行解域边界的交点也能达到最优解。所以,第一步的结论是:最优解必然会在可行解域的边界处达到。由于目标函数的各个等值域是平行的,而且目标函数的值将随着该等值域向某个方向平行移动而增加或减少(或不变)。如果最优解在可行解域边界某个非顶点处达到,则随着等值域向某个方向

软考高级